Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies
نویسندگان
چکیده
We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York-modeled as an exponential distribution-is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix-a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.
منابع مشابه
Graphical models via univariate exponential family distributions
Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a gene...
متن کاملMixed Graphical Models via Exponential Families
Markov Random Fields, or undirected graphical models are widely used to model highdimensional multivariate data. Classical instances of these models, such as Gaussian Graphical and Ising Models, as well as recent extensions (Yang et al., 2012) to graphical models specified by univariate exponential families, assume all variables arise from the same distribution. Complex data from high-throughpu...
متن کاملA Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.
The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multi...
متن کاملGraphical Models, Exponential Families, and Variational Inference
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimizati...
متن کاملGraphical Models via Generalized Linear Models
Undirected graphical models, also known as Markov networks, enjoy popularity in a variety of applications. The popular instances of these models such as Gaussian Markov Random Fields (GMRFs), Ising models, and multinomial discrete models, however do not capture the characteristics of data in many settings. We introduce a new class of graphical models based on generalized linear models (GLMs) by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JMLR workshop and conference proceedings
دوره 48 شماره
صفحات -
تاریخ انتشار 2016